feat(2023): remove code for new year

This commit is contained in:
Jiří Štefka 2023-12-10 00:49:37 +01:00
parent 25458f02e9
commit 595837a4ac
Signed by: jiriks74
GPG key ID: 1D5E30D3DB2264DE
13 changed files with 4 additions and 1201 deletions

View file

@ -1,39 +0,0 @@
{
"configurations": {
"Launch": {
"adapter": "vscode-cpptools",
"filetypes": [ "cpp", "c", "objc", "rust" ], // optional
"configuration": {
"request": "launch",
"program": "${workspaceRoot}/output/main",
"args": [ "${workspaceRoot}/tests/calories_test.dat"],
"cwd": "${workspaceRoot}/output",
//"environment": [ ... ],
"externalConsole": true,
"MIMode": "gdb"
}
},
"Attach": {
"adapter": "vscode-cpptools",
"filetypes": [ "cpp", "c", "objc", "rust" ], // optional
"configuration": {
"request": "attach",
"program": "${workspaceRoot}/output/main",
"MIMode": "gdb"
}
},
"Launch prod": {
"adapter": "vscode-cpptools",
"filetypes": [ "cpp", "c", "objc", "rust" ], // optional
"configuration": {
"request": "launch",
"program": "${workspaceRoot}/output/main",
"args": [ "calories.dat"],
"cwd": "${workspaceRoot}/output",
//"environment": [ ... ],
"externalConsole": true,
"MIMode": "gdb"
}
}
}
}

View file

@ -1,90 +0,0 @@
#
# 'make' build executable file 'main'
# 'make clean' removes all .o and executable files
#
# define the C compiler to use CC = gcc
# define any compile-time flags
CFLAGS := -std=c99 -Wall -Wextra -g
# define library paths in addition to /usr/lib
# if I wanted to include libraries not in /usr/lib I'd specify
# their path using -Lpath, something like:
LFLAGS =
# define output directory
OUTPUT := output
# define source directory
SRC := src
# define include directory
INCLUDE := include
# define lib directory
LIB := lib
ifeq ($(OS),Windows_NT)
MAIN := main.exe
SOURCEDIRS := $(SRC)
INCLUDEDIRS := $(INCLUDE)
LIBDIRS := $(LIB)
FIXPATH = $(subst /,\,$1)
RM := del /q /f
MD := mkdir
else
MAIN := main
SOURCEDIRS := $(shell find $(SRC) -type d)
INCLUDEDIRS := $(shell find $(INCLUDE) -type d)
LIBDIRS := $(shell find $(LIB) -type d)
FIXPATH = $1
RM = rm -f
MD := mkdir -p
endif
# define any directories containing header files other than /usr/include
INCLUDES := $(patsubst %,-I%, $(INCLUDEDIRS:%/=%))
# define the C libs
LIBS := $(patsubst %,-L%, $(LIBDIRS:%/=%))
# define the C source files
SOURCES := $(wildcard $(patsubst %,%/*.c, $(SOURCEDIRS)))
# define the C object files
OBJECTS := $(SOURCES:.c=.o)
#
# The following part of the makefile is generic; it can be used to
# build any executable just by changing the definitions above and by
# deleting dependencies appended to the file from 'make depend'
#
OUTPUTMAIN := $(call FIXPATH,$(OUTPUT)/$(MAIN))
all: $(OUTPUT) $(MAIN)
@echo Executing 'all' complete!
$(OUTPUT):
$(MD) $(OUTPUT)
$(MAIN): $(OBJECTS)
$(CC) $(INCLUDES) $(OBJECTS) $(LFLAGS) $(LIBS) -o $(OUTPUTMAIN) $(CFLAGS)
# this is a suffix replacement rule for building .o's from .c's
# it uses automatic variables $<: the name of the prerequisite of
# the rule(a .c file) and $@: the name of the target of the rule (a .o file)
# (see the gnu make manual section about automatic variables)
.c.o:
$(CC) $(CFLAGS) $(INCLUDES) -c $< -o $@
.PHONY: clean
clean:
$(RM) $(OUTPUTMAIN)
$(RM) $(call FIXPATH,$(OBJECTS))
@echo Cleanup complete!
run: all
./$(OUTPUTMAIN)
@echo Executing 'run: all' complete!

View file

@ -1,246 +0,0 @@
#include <stdbool.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
struct elf {
int size;
int *calories;
};
// Gets the number of elves in the input file.
int get_num_of_elves(const char *fileName) {
// Max line length
char line[300];
// Stores the number of empty lines (elves)
int emptyLine = 0;
// Open the file
FILE *fp = fopen(fileName, "r");
// Check if the file opened successfully
if (fp == NULL) {
printf("Error: Could not open specified file!\n");
return -1;
}
// Read the file and count blank lines
while (fgets(line, 300, fp)) {
int i = 0;
int len = strlen(line);
emptyLine++;
for (i = 0; i < len; i++) {
if (line[i] != '\n' && line[i] != '\t' && line[i] != ' ') {
emptyLine--;
break;
}
}
}
// Check if the last line in the file is empty
if (line[0] == '\n') {
emptyLine--;
}
// Close the file
fclose(fp);
// Return the number of elves (one elf won't be counted if there is a blank line at the end of the file)
return ++emptyLine;
}
/*
* Loads the elve's carried calories from the input file.
* Params:
* - int num_of_elves: The number of elves in the input file.
* - const char *fileName: The name of the input file.
* - struct elf *elves: The array of elves to store the data in.
*/
void load_data(int num_of_elves, char *filename, struct elf **arr) {
// Open the file
FILE *fp = fopen(filename, "r");
// Check if the file opened successfully
if (fp == NULL) {
printf("Error: Could not open specified file!\n");
return;
}
// Go through each elf
for (int i = 0; i < num_of_elves; i++) {
// Count number of lines until blank line
int num_of_lines = 0;
// Stores the current line (max length 300)
char line[300];
/*
* NOTE: The code below is used to get the number of items does the elf have
* so that the memory can be allocated corretly. But then wee need to go back
* to the start of the elve's data and we need the number of characters we read
* to do that
*/
// Counts the number of characters
int char_count = 0;
// Go through the elve's data
while (fgets(line, 300, fp)) {
// Length of the current line
int len = strlen(line);
// Update character count
char_count += len;
// Go through the line until a new line character is found
for (int i = 0; i < len; i++) {
if (line[i] != '\n' && line[i] != '\t' && line[i] != ' ') {
num_of_lines++;
break;
}
}
// Check if the line is empty
if (line[0] == '\n') {
break;
}
}
// Check for blank line at EOF (or you'll get an infinit loop if the last line is blank LOL)
if (line[0] == EOF) {
break;
}
// If the line is empty, go back to the start of the next elve
if (num_of_lines == 0) {
i--;
continue;
}
// Go back to start of current elf's data
fseek(fp, -char_count, SEEK_CUR);
// Reference the array
struct elf *data = *arr;
// Allocate memory for array
data[i].calories = malloc(num_of_lines * sizeof(int));
// Remember how many calories are stored
data[i].size = num_of_lines;
// Load the data
for (int j = 0; j < num_of_lines; j++) {
// Read the line ans add the calories to the correct elf in the array
int res = fscanf(fp, "%d", &data[i].calories[j]);
// Check if the line has the correct formatting
if (res != 1) {
printf("Error, bad file format!");
return;
}
}
}
// Close the file
fclose(fp);
}
// Count all the calories each elf has
// Params:
// - int num_of_elves: The number of elves in the input file.
// - struct elf *elves: The array with the data.
void count_elf_calories(struct elf **arr, int num_of_elves) {
// Reference the array
struct elf *data = *arr;
// Go through each elf
for (int i = 0; i < num_of_elves; i++) {
// Sum of the callories for the current elf
int sum = 0;
// Go through the elve's calories
for (int j = 0; j < data[i].size; j++) {
// Add the calories to the sum
sum += data[i].calories[j];
// Remove the callories and decrease the stored calories number
data[i].calories[j] = 0;
}
// Set the sum to indes 0
data[i].calories[0] = sum;
data[i].size = 1;
}
}
// Argument parser
char *argv_parser(int argc, char *argv[]) {
// This program has only one argument
if (argc != 2) {
fprintf(stderr, "Usage: %s <filename>\n", argv[0]);
return NULL;
}
// Return the argument as pos 1 (the filename)
return argv[1];
}
int main(int argc, char *argv[]) {
// The array of elves
struct elf *arr;
// Get the filename
char *filename = argv_parser(argc, argv);
// Get the number of elves in the file
int num_of_elves = get_num_of_elves(filename);
// Check if the operation was successful
if (num_of_elves == -1) {
return 1;
}
// Alocate the memory for the array
arr = malloc(num_of_elves * sizeof(struct elf));
// Load all the elve's calorias
load_data(num_of_elves, filename, &arr);
// Count all the calories each elf has
count_elf_calories(&arr, num_of_elves);
// Get 3 elves with the most calories
int first_elf_cal = 0;
int first_elf_idx = 0;
int second_elf_cal = 0;
int second_elf_idx = 0;
int third_elf_cal = 0;
int third_elf_idx = 0;
for (int i = 0; i < num_of_elves; i++) {
// If the elf has more calories than others, move the other elves down
if (arr[i].calories[0] > first_elf_cal) {
third_elf_cal = second_elf_cal;
third_elf_idx = second_elf_idx;
second_elf_cal = first_elf_cal;
second_elf_idx = first_elf_idx;
first_elf_cal = arr[i].calories[0];
first_elf_idx = i;
} else if (arr[i].calories[0] > second_elf_cal) {
third_elf_cal = second_elf_cal;
third_elf_idx = second_elf_idx;
second_elf_cal = arr[i].calories[0];
second_elf_idx = i;
} else if (arr[i].calories[0] > third_elf_cal) {
third_elf_cal = arr[i].calories[0];
third_elf_idx = i;
}
}
// Print out the 3 elves with the most calories
printf("Elf %d carries the most calories at %d calories\n", first_elf_idx,
first_elf_cal);
printf("Elf %d carries the second most calories at %d calories\n",
second_elf_idx, second_elf_cal);
printf("Elf %d carries the third most calories at %d calories\n",
third_elf_idx, third_elf_cal);
// Print the top 3 elves with the most calories
printf("The top 3 elves carry %d calories\n",
first_elf_cal + second_elf_cal + third_elf_cal);
// Free memory
for (int i = 0; i < num_of_elves; i++) {
free(arr[i].calories);
}
// Free the array
free(arr);
return 0;
}

View file

@ -1,14 +0,0 @@
1000
2000
3000
4000
5000
6000
7000
8000
9000
10000

View file

@ -1,39 +0,0 @@
{
"configurations": {
"Launch": {
"adapter": "vscode-cpptools",
"filetypes": [ "cpp", "c", "objc", "rust" ], // optional
"configuration": {
"request": "launch",
"program": "${workspaceRoot}/output/main",
"args": [ "${workspaceRoot}/tests/guide.dat", "2" ],
"cwd": "${workspaceRoot}/output",
//"environment": [ ... ],
"externalConsole": true,
"MIMode": "gdb"
}
},
"Attach": {
"adapter": "vscode-cpptools",
"filetypes": [ "cpp", "c", "objc", "rust" ], // optional
"configuration": {
"request": "attach",
"program": "${workspaceRoot}/output/main",
"MIMode": "gdb"
}
},
"Launch prod": {
"adapter": "vscode-cpptools",
"filetypes": [ "cpp", "c", "objc", "rust" ], // optional
"configuration": {
"request": "launch",
"program": "${workspaceRoot}/output/main",
"args": [ "guide.dat", "2" ],
"cwd": "${workspaceRoot}/output",
//"environment": [ ... ],
"externalConsole": true,
"MIMode": "gdb"
}
}
}
}

View file

@ -1,91 +0,0 @@
#
# 'make' build executable file 'main'
# 'make clean' removes all .o and executable files
#
# define the C compiler to use CC = gcc
# define any compile-time flags
# CFLAGS := -std=c99 -Wall -Wextra -g -lm
CFLAGS := -std=c99 -Wall -Wextra -g
# define library paths in addition to /usr/lib
# if I wanted to include libraries not in /usr/lib I'd specify
# their path using -Lpath, something like:
LFLAGS =
# define output directory
OUTPUT := output
# define source directory
SRC := src
# define include directory
INCLUDE := include
# define lib directory
LIB := lib
ifeq ($(OS),Windows_NT)
MAIN := main.exe
SOURCEDIRS := $(SRC)
INCLUDEDIRS := $(INCLUDE)
LIBDIRS := $(LIB)
FIXPATH = $(subst /,\,$1)
RM := del /q /f
MD := mkdir
else
MAIN := main
SOURCEDIRS := $(shell find $(SRC) -type d)
INCLUDEDIRS := $(shell find $(INCLUDE) -type d)
LIBDIRS := $(shell find $(LIB) -type d)
FIXPATH = $1
RM = rm -f
MD := mkdir -p
endif
# define any directories containing header files other than /usr/include
INCLUDES := $(patsubst %,-I%, $(INCLUDEDIRS:%/=%))
# define the C libs
LIBS := $(patsubst %,-L%, $(LIBDIRS:%/=%))
# define the C source files
SOURCES := $(wildcard $(patsubst %,%/*.c, $(SOURCEDIRS)))
# define the C object files
OBJECTS := $(SOURCES:.c=.o)
#
# The following part of the makefile is generic; it can be used to
# build any executable just by changing the definitions above and by
# deleting dependencies appended to the file from 'make depend'
#
OUTPUTMAIN := $(call FIXPATH,$(OUTPUT)/$(MAIN))
all: $(OUTPUT) $(MAIN)
@echo Executing 'all' complete!
$(OUTPUT):
$(MD) $(OUTPUT)
$(MAIN): $(OBJECTS)
$(CC) $(INCLUDES) $(OBJECTS) $(LFLAGS) $(LIBS) -o $(OUTPUTMAIN) $(CFLAGS)
# this is a suffix replacement rule for building .o's from .c's
# it uses automatic variables $<: the name of the prerequisite of
# the rule(a .c file) and $@: the name of the target of the rule (a .o file)
# (see the gnu make manual section about automatic variables)
.c.o:
$(CC) $(CFLAGS) $(INCLUDES) -c $< -o $@
.PHONY: clean
clean:
$(RM) $(OUTPUTMAIN)
$(RM) $(call FIXPATH,$(OBJECTS))
@echo Cleanup complete!
run: all
./$(OUTPUTMAIN)
@echo Executing 'run: all' complete!

View file

@ -1,271 +0,0 @@
#include <stdio.h>
#include <stdlib.h>
/* Error codes:
* 0 - no error
* 1 - invalid number of arguments
* 2 - invalid file
* 3 - invalid file format
* 4 - invalid solution part
*/
/* NOTE: info to remember:
* The aliases for rock, paper, scissors are:
* - A = X = rock
* - B = Y = paper
* - C = Z = scissors
* ------------------------------------------
* Scores:
* - Shape
* - Rock: 1
* - Paper: 2
* - Scissors: 3
* - Outcome
* - Win: 6
* - Draw: 3
* - Loss: 0
*/
int arg_parser(int argc, char *argv[], char **file_name, int *solution_part) {
if (argc != 3) {
printf("Usage: %s <file> <solution_part (1/2)>\n", argv[0]);
return 1;
}
// Check if the file exists
FILE *file = fopen(argv[1], "r");
if (file == NULL) {
printf("Error: File does not exist.\n");
return 2;
}
fclose(file);
// Check if the solution part is a valid number
if (atoi(argv[2]) != 1 && atoi(argv[2]) != 2) {
printf("Error: Invalid solution part.\nValid values are [1, 2]\n");
return 4;
}
*file_name = argv[1];
*solution_part = atoi(argv[2]);
return 0;
}
// Returns the score of the given shape
// 1 = rock, 2 = paper, 3 = scissors
int score_shapes(char shape) {
switch (shape) {
case 'A':
case 'X':
return 1;
case 'B':
case 'Y':
return 2;
case 'C':
case 'Z':
return 3;
default:
return -1;
}
}
/* Returns my score for the round
*
* Parameters:
* - opponents_shape
* - A = rock
* - B = paper
* - C = scissors
* - my_shape
* - X = rock
* - Y = paper
* - Z = scissors
*/
int round_score(char opponents_shape, char my_shape) {
// Checks if the shapes are valid and get their scores
int opponents_score = score_shapes(opponents_shape);
int shape_score = score_shapes(my_shape);
if (opponents_score == -1 || shape_score == -1) {
printf("Error: Invalid shape.\n");
return -1;
}
// Draw
if (opponents_shape == 'A' && my_shape == 'X') {
return 3 + shape_score;
} else if (opponents_shape == 'B' && my_shape == 'Y') {
return 3 + shape_score;
} else if (opponents_shape == 'C' && my_shape == 'Z') {
return 3 + shape_score;
}
// Rock win
else if (my_shape == 'X' && opponents_shape == 'C') {
return 6 + shape_score;
}
// Paper win
else if (my_shape == 'Y' && opponents_shape == 'A') {
return 6 + shape_score;
} // Scissors win
else if (my_shape == 'Z' && opponents_shape == 'B') {
return 6 + shape_score;
} else {
return shape_score;
}
}
int score_file(char **file_name) {
FILE *file = fopen(*file_name, "r");
if (file == NULL) {
printf("Error opening the file.\n");
return -2;
}
int my_score = 0;
// Read the file
while (!feof(file)) {
char opponent[1];
char me[1];
int res = fscanf(file, "%s %s", opponent, me);
if (res == EOF) {
break;
}
// Check for blank line at the end of the file
else if (res == 1 && opponent[0] == '\n') {
continue;
} else if (res != 2) {
printf("Error: Bad file format.\n");
return -3;
}
my_score += round_score(*opponent, *me);
}
fclose(file);
return my_score;
}
/* NOTE:
* ------------------------------------------------------------
* PART 2 OF THE SOLUTION
* ------------------------------------------------------------
*/
char *get_win_shape_part2(char *opponents_shape) {
switch (*opponents_shape) {
case 'A':
return "B";
case 'B':
return "C";
case 'C':
return "A";
default:
return "0";
}
}
// Returns the shape that looses against the given shape
//
// Parameters:
// - opponents_shape
// - A = rock
// - B = paper
// - C = scissors
char *get_loss_shape_part2(char *opponents_shape) {
switch (*opponents_shape) {
case 'A':
return "C";
case 'B':
return "A";
case 'C':
return "B";
default:
return "0";
}
}
/* Returns the score for a given round
*
* Parameters:
* - opponents_shape
* - A = rock
* - B = paper
* - C = scissors
* - round_result
* - X = loss
* - Y = draw
* - Z = win
*/
int score_round_part_2(char *opponents_shape, char *round_result) {
if (*round_result == 'X') {
char *loss_shape = get_loss_shape_part2(opponents_shape);
return score_shapes(*loss_shape);
} else if (*round_result == 'Y') {
// I have the same shape as the opponent
return 3 + score_shapes(*opponents_shape);
} else if (*round_result == 'Z') {
char *win_shape = get_win_shape_part2(opponents_shape);
return 6 + score_shapes(*win_shape);
} else {
return -1;
}
}
// score_part2
int score_file_part2(char **file_name, int *score) {
FILE *file = fopen(*file_name, "r");
if (file == NULL) {
printf("Error opening the file.\n");
return 2;
}
// int score = 0;
// Read the file
while (!feof(file)) {
char opponent;
char round_res;
int res = fscanf(file, "%s %s", &opponent, &round_res);
if (res == EOF) {
break;
}
// Check for blank line at the end of the file
else if (res == 1 && opponent == '\n') {
continue;
} else if (res != 2) {
printf("Error: Bad file format.\n");
return 3;
}
*score += score_round_part_2(&opponent, &round_res);
}
fclose(file);
// return score;
return 0;
}
int main(int argc, char *argv[]) {
char *file_name;
int solution_part;
int score = 0;
int res = arg_parser(argc, argv, &file_name, &solution_part);
if (res != 0) {
return res;
}
if (solution_part == 1) {
printf("My score: %d\n", score_file(&file_name));
} else {
int res = score_file_part2(&file_name, &score);
if (res != 0) {
return res;
}
printf("My score: %d\n", score);
}
return 0;
}

View file

@ -1,4 +0,0 @@
A Y
B X
C Z

View file

@ -1,39 +0,0 @@
{
"configurations": {
"Launch": {
"adapter": "vscode-cpptools",
"filetypes": [ "cpp", "c", "objc", "rust" ], // optional
"configuration": {
"request": "launch",
"program": "${workspaceRoot}/output/main",
"args": [ "../tests/rucksacks.dat", "2" ],
"cwd": "${workspaceRoot}/output",
//"environment": [ ... ],
"externalConsole": true,
"MIMode": "gdb"
}
},
"Attach": {
"adapter": "vscode-cpptools",
"filetypes": [ "cpp", "c", "objc", "rust" ], // optional
"configuration": {
"request": "attach",
"program": "${workspaceRoot}/output/main",
"MIMode": "gdb"
}
},
"Launch prod": {
"adapter": "vscode-cpptools",
"filetypes": [ "cpp", "c", "objc", "rust" ], // optional
"configuration": {
"request": "launch",
"program": "${workspaceRoot}/output/main",
"args": [ "rucksacks.dat", "2" ],
"cwd": "${workspaceRoot}/output",
//"environment": [ ... ],
"externalConsole": true,
"MIMode": "gdb"
}
}
}
}

View file

@ -1,91 +0,0 @@
#
# 'make' build executable file 'main'
# 'make clean' removes all .o and executable files
#
# define the C compiler to use CC = gcc
# define any compile-time flags
# CFLAGS := -std=c99 -Wall -Wextra -g -lm
CFLAGS := -std=c99 -Wall -Wextra -g
# define library paths in addition to /usr/lib
# if I wanted to include libraries not in /usr/lib I'd specify
# their path using -Lpath, something like:
LFLAGS =
# define output directory
OUTPUT := output
# define source directory
SRC := src
# define include directory
INCLUDE := include
# define lib directory
LIB := lib
ifeq ($(OS),Windows_NT)
MAIN := main.exe
SOURCEDIRS := $(SRC)
INCLUDEDIRS := $(INCLUDE)
LIBDIRS := $(LIB)
FIXPATH = $(subst /,\,$1)
RM := del /q /f
MD := mkdir
else
MAIN := main
SOURCEDIRS := $(shell find $(SRC) -type d)
INCLUDEDIRS := $(shell find $(INCLUDE) -type d)
LIBDIRS := $(shell find $(LIB) -type d)
FIXPATH = $1
RM = rm -f
MD := mkdir -p
endif
# define any directories containing header files other than /usr/include
INCLUDES := $(patsubst %,-I%, $(INCLUDEDIRS:%/=%))
# define the C libs
LIBS := $(patsubst %,-L%, $(LIBDIRS:%/=%))
# define the C source files
SOURCES := $(wildcard $(patsubst %,%/*.c, $(SOURCEDIRS)))
# define the C object files
OBJECTS := $(SOURCES:.c=.o)
#
# The following part of the makefile is generic; it can be used to
# build any executable just by changing the definitions above and by
# deleting dependencies appended to the file from 'make depend'
#
OUTPUTMAIN := $(call FIXPATH,$(OUTPUT)/$(MAIN))
all: $(OUTPUT) $(MAIN)
@echo Executing 'all' complete!
$(OUTPUT):
$(MD) $(OUTPUT)
$(MAIN): $(OBJECTS)
$(CC) $(INCLUDES) $(OBJECTS) $(LFLAGS) $(LIBS) -o $(OUTPUTMAIN) $(CFLAGS)
# this is a suffix replacement rule for building .o's from .c's
# it uses automatic variables $<: the name of the prerequisite of
# the rule(a .c file) and $@: the name of the target of the rule (a .o file)
# (see the gnu make manual section about automatic variables)
.c.o:
$(CC) $(CFLAGS) $(INCLUDES) -c $< -o $@
.PHONY: clean
clean:
$(RM) $(OUTPUTMAIN)
$(RM) $(call FIXPATH,$(OBJECTS))
@echo Cleanup complete!
run: all
./$(OUTPUTMAIN)
@echo Executing 'run: all' complete!

View file

@ -1,271 +0,0 @@
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
/*
* Error codes:
* 0 - no error
* 1 - invalid arguments
* 2 - memory allocation error
* 3 - invalid file
* 4 - invalid file format
*/
/*
* Finds duplicate character in a given rucksack
* It finds the duplicates between the first and second compartments
* (first compartment is the first half of the rucksack, second compartment
* is the second half of the rucksack)
*
* Parameters:
* - char *str
* - The input string
*
* Returns:
* - char
* - The duplicate character
*/
char find_dup_char(char *str) {
int i, j;
int len = strlen(str);
char *first_compartment = (char *)malloc(len / 2);
char *second_compartment = (char *)malloc(len / 2);
char dup_char;
// Copy the first half of the rucksack to the first compartment
// Copy the second half of the rucksack to the second compartment
for (i = 0; i < len; i++) {
if (i < len / 2) {
first_compartment[i] = str[i];
} else {
second_compartment[i - len / 2] = str[i];
}
}
// Find the duplicate character
for (i = 0; i < len / 2; i++) {
for (j = 0; j < len / 2; j++) {
if (first_compartment[i] == second_compartment[j]) {
dup_char = first_compartment[i];
// Free the memory
free(first_compartment);
free(second_compartment);
return dup_char;
}
}
}
return '\0';
}
// Returns the score for a given character
int score_char(char c) {
// If the character is a capital letter
if (64 < c && c < 91) {
return c - 38;
}
// If the character is a lower case letter
else if (96 < c && c < 123) {
return c - 96;
} else {
return -1;
}
}
int score_file(char **filename, int *score) {
FILE *fp = fopen(*filename, "r");
if (fp == NULL) {
fprintf(stderr, "Error opening file `%s!\n", *filename);
return 3;
}
// Count the number of rucksacks
// One rucksack per line
// Ignore the empty lines
int num_rucksacks = 0;
// Get the number of rucksacks
// Number of lines in the file (without last empty line)
char line[300];
while (fgets(line, 100, fp) != NULL) {
if (strcmp(line, "\n") != 0)
num_rucksacks++;
}
rewind(fp);
// Alocate memory for the temporary rucksack
char *rucksack = malloc(100 * sizeof(char));
if (rucksack == NULL) {
fprintf(stderr, "Error allocating memory for rucksack\n");
return 2;
}
for (int i = 0; i < num_rucksacks; i++) {
// Get the rucksack
int res = fscanf(fp, "%s", rucksack);
if (res == EOF) {
break;
}
// Check for blank line at the end of the file
else if (res == 1 && strcmp(rucksack, "\n") == 0) {
i--;
continue;
} else if (res != 1) {
printf("Error: Bad file format.\n");
// Free the memory
free(rucksack);
fclose(fp);
return 4;
}
// Find the duplicate character and score it
*score += score_char(find_dup_char(rucksack));
}
// Free the memory
fclose(fp);
free(rucksack);
return 0;
}
/*
* NOTE: Part 2
* ------------------------------------------------------
*/
/* Find badge character
*
* Parameters:
* - char *rucksack 1
* - char *rucksack 2
* - char *rucksack 3
* Returns:
* - char
* - The badge character
*/
char find_badge(char *rucksack1, char *rucksack2, char *rucksack3) {
for (size_t i = 0; i < strlen(rucksack1); i++) {
for (size_t j = 0; j < strlen(rucksack2); j++) {
if (rucksack1[i] == rucksack2[j]) {
for (size_t k = 0; k < strlen(rucksack3); k++) {
if (rucksack1[i] == rucksack3[k]) {
return rucksack1[i];
}
}
}
}
}
return '\0';
}
/* Score badges in a file
*
* Parameters:
* - char **filename
* - The name of the file
* - The file must have one rucksack per line
* - 3 rucksacks are separated by a blank line
* - int *score
* - The score of the badges in the file
* Returns:
* - int
* - Error code
*/
int score_badges_file(char **filename, int *score) {
FILE *fp = fopen(*filename, "r");
if (fp == NULL) {
fprintf(stderr, "Error opening file `%s!\n", *filename);
return 3;
}
// Allocate memory for the rucksacks
char *rucksack1 = malloc(100 * sizeof(char));
char *rucksack2 = malloc(100 * sizeof(char));
char *rucksack3 = malloc(100 * sizeof(char));
// Iterate over the file
int res = fscanf(fp, "%s\n%s\n%s\n\n", rucksack1, rucksack2, rucksack3);
while (res != EOF) {
if (res != 3) {
fprintf(stderr, "Error: Bad file format.\n");
// Free the memory
free(rucksack1);
free(rucksack2);
free(rucksack3);
fclose(fp);
return 4;
}
// Find the badge character
char badge = find_badge(rucksack1, rucksack2, rucksack3);
// Score the badge
*score += score_char(badge);
res = fscanf(fp, "%s\n%s\n%s\n\n", rucksack1, rucksack2, rucksack3);
}
// Free the memory
free(rucksack1);
free(rucksack2);
free(rucksack3);
fclose(fp);
return 0;
}
int arg_parser(int argc, char *argv[], char **filename, int *part) {
if (argc != 3) {
printf("Usage: %s <file> <part (1,2)>\n", argv[0]);
return 1;
}
// Check if the file exists
FILE *fp = fopen(argv[1], "r");
if (fp == NULL) {
fprintf(stderr, "File %s does not exist\n", argv[1]);
return 3;
}
fclose(fp);
*filename = argv[1];
// Check if the part is valid
if (strcmp(argv[2], "1") != 0 && strcmp(argv[2], "2") != 0) {
fprintf(stderr, "Invalid part number: %s\n", argv[2]);
return 1;
}
*part = atoi(argv[2]);
return 0;
}
int main(int argc, char *argv[]) {
char *filename;
int part;
int score = 0;
int res = arg_parser(argc, argv, &filename, &part);
if (res != 0) {
return res;
}
if (part == 1) {
res = score_file(&filename, &score);
if (res != 0) {
return res;
}
} else {
res = score_badges_file(&filename, &score);
if (res != 0) {
return res;
}
}
printf("Score: %d\n", score);
return 0;
}

View file

@ -1,6 +0,0 @@
vJrwpWtwJgWrhcsFMMfFFhFp
jqHRNqRjqzjGDLGLrsFMfFZSrLrFZsSL
PmmdzqPrVvPwwTWBwg
wMqvLMZHhHMvwLHjbvcjnnSBnvTQFn
ttgJtRGJQctTZtZT
CrZsJsPPZsGzwwsLwLmpwMDw

View file

@ -1,2 +1,6 @@
# AdventOfCode
This repository contains all my code I've made for [`Advent of code`](https://adventofcode.com)!
## Previous years
- [2022](https://gitea.stefka.eu/jiriks74/AdventOfCode/src/branch/2022)